quinta-feira, 26 de abril de 2007

Cartilagem Elástica


FIBRAS ELÁSTICAS
Trata-se de um corte de pavilhão de orelha, corado por um corante específico para fibras elásticas, as quais coram-se muito mal pelo método convencional H.E.. Os componentes da matriz extracelular dessa cartilagem são essencialmente as fibras elásticas representadas pela grande quantidade de filamentos, aqui coradas, seletivamente, com o corante orceína, em vermelho-castanho. As fibras elásticas podem ser observadas na sua forma tridimensional em preparação total de mesentério.

Cartilagem Hialina



A cartilagem hialina é a variedade mais encontrada no nosso corpo e, portanto, a mais estudada. É encontrada no disco epifisário, permitindo o crescimento longitudinal dos ossos. Neste disco, a cartilagem hialina apresenta os condrócitos dispostos em fileiras ou colunas paralelas, comumente recebendo a designação de cartilagem seriada.
Os principais locais onde a cartilagem hialina é encontrada no adulto são: fossas nasais, traquéia e brônquios, extremidade ventral das costelas e recobrindo a superfície dos ossos longos.
A matriz da catilagem hialina contém fibrilas de colágeno tipo II imersas em substância fundamental amorfa. As fibrilas de colágeno não podem ser visualizadas em preparados comuns, pois , além de possuírem reduzidas dimensões, seu índice de refração é muito semelhante ao da substância amorfa.
A parte amorfa da matriz é composta por macromoléculas de proteoglicanas. As proteoglicanas consistem em uma parte central, protéica, de onde se irradiam as moléculas de glicosaminoglicanas (condroitina 4-sulfato, condroitina 6-sulfato, queratossulfato). O ácido hialurônico é outra glicosaminoglicana presente na matriz, porém esta é uma molécula muito grande, que integra várias proteoglicanas.
Em torno dos condrócitos, a matriz torna-se pobre em colágeno. Estas zonas, ricas em proteoglicanas, são metacromáticas, basófilas e se coram mais intensamente pela técnica PAS.
De acordo com sua localização no tecido cartilaginoso, os condrócitos apresentam formas diversas. Assim, na periferia da cartilagem eles possuem forma elíptica, com o maior eixo paralelo à superfície. Já na parte central da cartilagem, os condrócitos são arredondados, formando grupos de até oito células originadas de um único condroblasto por divisão mitótica. Devido a sua origem comum, estes agrupamentos de condrócitos são chamados de grupos isógenos.
Na lâmina podem-se observar vários grupos isógenos. O processo histológico provoca retração dos condrócitos e da matriz, permitindo a observação das lacunas em que os grupos isógenos se encontram. In vivo, estas lacunas não podem ser visualizadas.
Com exceção da cartilagem fibrosa, que se localiza revestindo as articulações (cartilagem articular), todas as demais cartilagens possuem um revestimento de tecido conjuntivo conhecido como pericôndrio (do grego peri, ao redor de, e chondros, cartilagem), que é essencial para a preservação dos condrócitos, pois é nesta camada que os condrócitos se originam. O pericôndrio também é responsável pela nutrição da cartilagem, por sua oxigenação e pela eliminação de refugos metabólicos, pois nele se encontram os vasos sangüíneos e linfáticos que não estão presentes na cartilagem.
O pericôndrio possui duas camadas: fibrosa e condrogênica. A camada profunda é chamada condrogênica e possui células arredondadas que, por mitose, originarão os condrócitos. Esta camada é responsável pelo crescimento aposicional da cartilagem. A camada superficial do pericôndrio é composta por tecido cojuntivo denso regularmente disposto, fibrócitos, fibroblastos e fibras colágenas
A maior parte do crescimento do tecido cartilaginoso durante a vida pós-natal ocorre por aposição de novas células a partir da camada mais profunda do pericôndrio (camada condrogênica). Nas primeiras fases da vida da cartilagem pode ocorrer a divisão de células que se encontram na parte central da cartilagem. Este tipo de crescimento é conhecido como crescimento intersticial, e se torna inviável com o passar do tempo porque a matriz da cartilagem torna-se mais rígida.
Nas preparações em HE, a coloração é devida principalmente aos glicosaminoglicanos sulfatados das proteoglicanas. A zona ao redor das lacunas, como já foi dito, é rica em proteoglicanas e pobre em colágenos, corando-se mais intensamente pela hematoxilina.. Com o azul-de-toluidina, as glicosaminoglicanas coram-se de vermelho, pois são metacromáticas. O PAS cora as estruturas glicoprotéicas da matriz

Tecido Osseo


O tecido ósseo é um tecido conjuntivo bem rígido, encontrado nos ossos do esqueleto dos vertebrados, onde ele é o tecido mais abundante. Suas funções principais são:


sustentar o corpo;
permitir a realização de movimentos;
proteger certos orgãos;
realizar a produção de elementos celulares do sangue
.


As diferentes células envolvida e dois componentes da matriz mesenquimal óssea, que obrigatoriamente devem ser avaliados simultâneas em seus dois compartimentos o protéico e inorgânico, tornando necessária e fundamental uma breve revisão do papel do tecido mesenquimatoso durante todo o desenvolvimento embrionário.
As células mesenquimatosas indiferenciadas além da capacidade de se mover através dos tecidos, têm o potencial de se dividir rapidamente e se diferenciar em células especializadas do tecido músculo esquelético; como exemplo, em células de cartilagem, osso, tecidos fibrosos densos e músculos. Inúmeros fatores sistêmicos relacionados como a nutrição, com o equilíbrio hormonal ou ainda combinados com outros fatores locais (oxigênio, citocinas, nutrientes e etc) que serão discutidos em capítulo específico, influenciam a proliferação e a diferenciação das células mesenquimatosas.
Os fatores locais e sistêmicos interagem com o potencial genômico das células-tronco indiferenciadas para determinar a sua progressão até as células altamente diferenciadas, como os condrócitos e osteócitos. As células mesenquimatosas indiferenciadas dão origem a vários tipos de células e o processo de diferenciação depende dos estímulos oriundos do meio. Assim, as células mesenquimatosas podem assumir várias formas dentre os quais destacamos: eritrócito, leucócito, macrófago, adipócito, célula muscular lisa, condrócito, fibroblastos, osteoblasto que por sua vez origina o osteócito. É importante realçar que o osso, in natura, possui uma matriz protéica que perfaz respectivamente 70% do volume e 30% do peso do osso; enquanto que a matriz inorgânica, que é formada principalmente pelo fosfato de cálcio, corresponde apenas a 35% do volume e 60% do peso do osso. Os complementos restantes são devidos a outros elementos e principalmente a água. É conceito primário da física dos materiais que a estrutura de subsistência de qualquer substância, produto, objeto ou do corpo humano é a responsável pela sua resistência e sustentação. Logo, até pelo simples conhecimento da física básica, é possível entender de forma direta e simples, a razão do colágeno ósseo, estrutura de sustentação de vários tecidos humanos, inclusive do osso, estabelecer relação direta entre sua deterioração e o risco de fratura. Sendo o tecido ósseo altamente vascularizado, todo o esqueleto recebe a cada minuto 10% de todo o débito cardíaco, revelando a importância de uma eficaz perfusão sanguínea óssea, para oferecer nutrientes básicos essenciais para a adequada síntese de colágeno. Apesar de ser o mais importante componente da matriz mesenquimal óssea, outras proteínas participam do processo de iniciação da mineralização óssea, que corresponde a ligação do componente mineral à matriz protéica. Na fase inicial ocorre um contato íntimo, estreito, da hidroxiapatita com as fibrilas do colágeno, se situando em locais específicos que são denominados de “buracos “ que existem entre as fibrilas que compõem a tri hélice do colágeno. Essa disposição arquitetural sobre a matriz protéica básica resulta em um produto bilamelar, que é responsável pelas propriedades mecânicas do osso, sendo portanto capaz de resistir a todo tipo de estresse mecânico.
Por sua vez, o colágeno propicia a todos os tipos de tecidos conjuntivos a sua forma básica e no tecido ósseo é o principal responsável pela resistência tênsil (resistência à fratura). No entanto, os tipos, as concentrações e a organização do c
olágeno são variáveis em cada tecido. O colágeno tipo I forma as fibrilas de feixes transversais que podem ser observados na microscopia eletrônica em todos os tecidos conjuntivos

Complexo de Golgi


Em biologia celular, o complexo de Golgi, aparelho de Golgi, dictiossoma, golgiossomo ou complexo golgiense são organelas encontradas em quase todas as células eucarióticas. O nome provém de Camilo Golgi, que foi quem o identificou. É formado por sacos achatados e vesículas, sua função primordial é o processamento de proteínas ribossomaticas e a sua distribuição por entre essas vesículas. Funciona, portanto, como uma espécie de sistema central de distribuição na célula, atua como centro de armazenamento, transformação, empacotamento e remessa de substâncias na célula. É responsável também pela formação dos lisossomos, da lamela média dos vegetais e do acrossomo do espermatozóide.

Núcleo Célular


O núcleo celular, descoberto em 1833 pelo pesquisador escocês Robert Brown, é uma estrutura presente nas células eucariontes, que contém o ADN (ou DNA) da célula. É delimitado pelo envoltório nuclear, e se comunica com o citoplasma através dos poros nucleares. O núcleo possui duas funções básicas: regular as reações químicas que ocorrem dentro da célula, e armazenar as informações genéticas da célula. O seu diâmetro pode variar de 11 a 22.25 μm.
Além do material genético, o núcleo também possui algumas proteínas com a função de regular a
expressão gênica, que envolve processos complexos de transcrição, pré-processamento do mRNA (RNA mensageiro), e o transporte do mRNA formado para o citoplasma. Dentro do núcleo ainda podemos encontrar uma estrutura denominada nucléolo, que é responsável pela produção de sub-unidades dos ribossomos.
O envoltório nuclear é responsável tanto por separar as reações químicas que ocorrem dentro do citoplasma daquelas que ocorrem dentro do núcleo, quanto por permitir a comunicação entre esses dois ambientes. Essa comunicação é realizada pelos
poros núcleares que se formam da fusão entre a membrana interna e a externa do envoltório nuclear.
O interior do núcleo é composto por uma matriz denominada de nucleoplasma, que é um líquido de concistência gelatinosa, similar ao citoplasma. Dentro dele estão presentes várias substâncias nescessárias para o funcionamento do núcleo, incluíndo
bases nitrogenadas, enzimas, proteínas e fatores de transcrição. Também existe uma rede de fibras dentro do nucleoplasma (chamada de matriz nuclear), cuja função ainda está sendo discutida.
O
ADN presente no núcleo encontra-se geralmente organizado na forma de cromatina (que pode ser eucromatina ou heterocromatina), durante o período de interfase. Durante a divisão celular, porém, o material genético é organizado na forma de cromossomos.
Sua posição é geralmente central, acompanhando o formato da célula, mas isso pode variar de uma para outra. Nos
eritrócitos dos mamíferos, o núcleo está ausente.

Membrana Plasmática


A membrana celular é a parte que delimita todas as células vivas, tanto as procariontes como as eucariontes. Ela estabelece a fronteira entre o meio intra-celular e o meio extracelular (que pode ser a matriz dos diversos tecidos). "Tem cerca de 7 a 10 nm de espessura e figura nas eletromicrografias como duas linhas escuras separadas por uma linha central clara. Esta estrutura trilaminar é comum às outras membranas encontradas nas células, sendo por isso chamada de unidade de membrana ou membrana unitária".[1]
A membrana celular não é estanque, mas uma “porta” seletiva que a célula usa para captar os elementos do meio exterior que lhe são necessários para o seu metabolismo e para libertar as substâncias que a célula produz e que devem ser enviadas para o exterior (sejam elas produtos de excreção, portanto, das quais deve se libertar, ou secreções que a célula utiliza para várias funções relacionadas com o meio).
d